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• Standing wave accelerating structures with distributed 

coupling could be adapted for Axion search

• Use electron beam tunnel for perturbation to tune cavities 

actively 

• Historically coupling was … interesting

Accelerating Structures with Distributed Coupling

Tantawi, Sami G., et al. "Research and 

development for ultra-high gradient 

accelerator structures." AIP Conference 

Proceedings. Vol. 1299. No. 1. 2010.



Standing Wave Coupled Cavity Structures

Neilson, J. et al. NIMA 657.1 (2011): 52-54.

S. Tantawi Qatar Foundation Workshop on Compact X-ray Light Sources 2014

• New approach under test at SLAC much more compact
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• Mode competition is a major concern in accelerators

• Major efforts to develop cavities that suppress 

undesired modes

Mode Suppression in Accelerating Structures

Higo, Toshiyasu, et al. "Advances in X-band TW Accelerator Structures 

Operating in the 100 MV/m Regime." THPEA013, IPAC10, Kyoto (2010).

• One approach is to add 

damping with cells or 

couplers to remove power 

from problematic modes



• PBG Cavities can be used to damp TE and TM modes 

that are not of interest

• Structures built from GHz to 100’s of GHz

PBG Cavities for Mode Selectivity

Marsh, Roark A. Diss. MIT, 2009.

Munroe, Brian J., et al. PRST-AB 16.1 (2013): 012005.

Nanni, E. A., et al. PRL 111.23 (2013): 235101.

TM Modes

TE Modes
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Overmoded Corrugated Waveguide

• HE11 mode in metallic corrugated waveguide as very low 

loss and wide bandwidths

• Radius a >> λ, Groove depth d ≈ λ/4, Period p ≈ λ/3 and 

Groove Width w < p/2

• Use helical tapping to overcome fabrication challenges

Nanni et al., JIMT, July 2012, Volume 33, Issue 7, pp 695-714



Impedance Approximation

• Impedance of the corrugations determined by the 

groove geometry

• Corrugations behave like a shorted transmission line for 

d=λ/4 impedance at surface wall is infinite resulting in a 

null for the magnetic field

•

• Magnetic field inside the groove



• Loss can be very low even at 

hundreds of GHz

• Measured loss of 

0.029±0.009 dB/m at 250 

GHz  (improved to 0.01 dB/m)

Loss Measurements

Nanni et al., JIMT, July 2012, Volume 33, Issue 7, pp 695-714

[dB]

Far Field Pattern



Electric Field

Magnetic Field

Radial Field

Axial Field

Azimuthal Field

Axial Field

Slide: S. Tantawi

X-band Structure: Hybrid Mode Fields



HE1n Modes Scaling Laws

For an undulator made of copper at room temperature :
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Slide: S. Tantawi



Undulator Coupler Design

Corrugation Period=0.4254 

Inner Radius=0.75 

Outer radius= 1.01293 

Corrugation Thickness= /16

Number of periods =98

=2.6242296 cm

Undulator Wavelength=1.39306 cm

Power required (for linearly polarized, K=1)=48.8 MW

Q0=94,000

Undulator Mechanical Structure

Electric Field Distribution 

Two coupling ports 90o apart to excite 

two polarizations independently

Coupler Field 

Configuration 

Slide: S. Tantawi



Undulator Structure Tested at NLCTA

Calculations from cold test data @ 20 °C with air:

Resonance Frequency (f0) = 11.419 GHz (11.424 under vacuum @12.1 °C) 

β = 1.53, Q0 = (1+ β) Qtotal = 91,000 (Simulations 94,000)
Slide: S. Tantawi



Comparison between Simulations and Cold Test Data

Slide: S. Tantawi

Tantawi, Sami, et al. "Experimental demonstration of a tunable microwave 

undulator." Physical review letters 112.16 (2014): 164802.



Slide: S. Tantawi
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Advanced superconducting material  testing setup

• New, 2nd generation cryostat 

dedicated to SRF materials 

characterization.

• Improvements over 1st gen.:

 Remote-motor cryocooler – to 

reduce cavity vibrations and 

fluctuations in resonant 

frequency.

 Increased pumping – to improve 

cryostat base pressure (1e-9 torr

vs. 1e-6 torr prior).

 Improved thermal isolation – to 

increase 4 K cooling power 

reserved for cavity dissipation. Slide: S. Tantawi



Gtotal =1388.7

Gsphere =2066.5

Gsample=4233.1

Geometric Factors:
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Basic Calculations

• Use measurement of Q and HFSS 

calculation of G to determine R

Slide: P. Welander and M. Franzi

Guo, Jiquan, et al. "Cryogenic RF Material Testing at SLAC." PAC, 2011.



High-Power Testing

• Utilizes Cu cavity and XL-4 klystron as RF source.
 Cu does not quench like a superconductor

 H-field on the sample surface is roughly quadratic with radius

 Sample quenches gradually, with the normal ring growing 

wider with increasing power

Slide: P. Welander and M. Franzi



Low-Power Testing in Cu Cavity
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Temperature(K)

• With a programmable network analyzer (PNA) as power 

source, measure S22 parameter.
 Copper has no transition temperature, making it ideal for 

measuring sample Tc

Slide: P. Welander and M. Franzi



Questions?


